

Assessment of Habitat Availability, Capacity, and Limitations for Chinook Salmon and Steelhead in the Willamette River and its Major Tributaries

Russell Perry¹, Gabriel Hansen¹, Tobias Kock¹, James White², Rose Wallick² and Laurel Stratton²

> ¹Western Fisheries Research Center ²Oregon Water Science Center

> > February 11, 2020

U.S. Department of the Interior U.S. Geological Survey

Research Question and Goals

Research Question:

How do dam operations influence habitat availability, carrying capacity, and density-dependent processes for adult spawning and juvenile rearing (Chinook salmon and steelhead) in the Willamette River basin downstream of Project dams?

<u>Goals:</u>

- Review and summarize existing methods for estimating habitat availability under different flow and temperature scenarios.

- Review existing habitat availability and carrying capacity studies in the Willamette River basin.

- Identify critical knowledge gaps

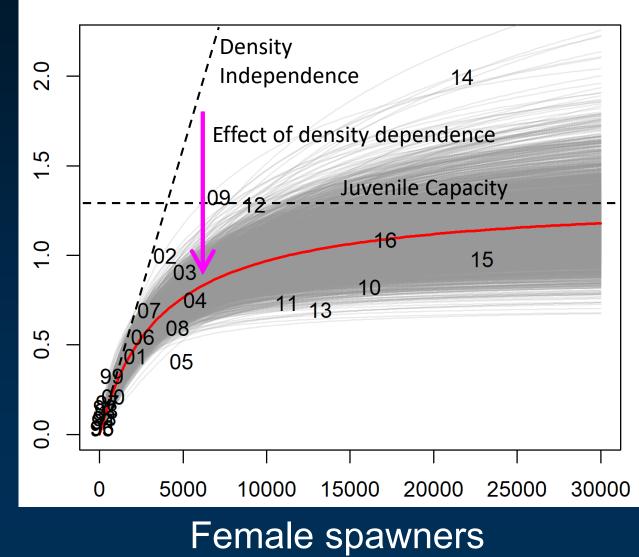
Overview

- Link habitat availability, capacity, and density dependence
- Review habitat modeling methods
- Assess in-basin habitat studies and data
- Introduce pilot study to validate habitat modeling

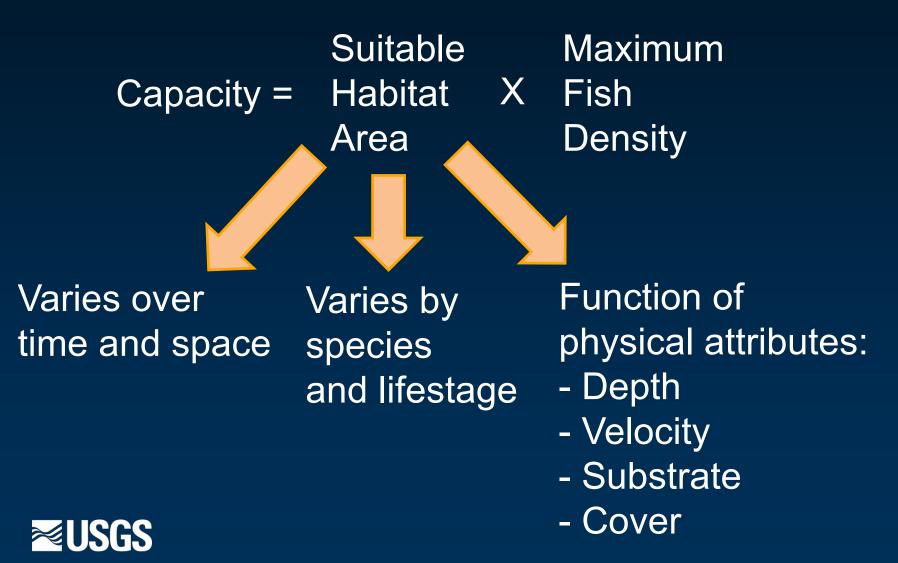
Linking Habitat, Capacity, and Density Dependence

Habitat Quantity and Quality

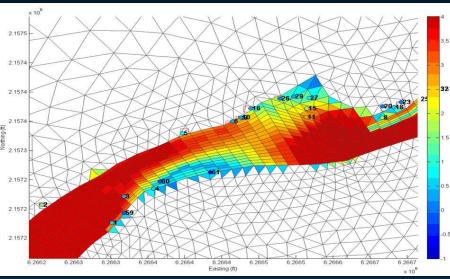
Carrying Capacity


Density Dependent Population Dynamics

Linking Habitat, Capacity, and Density Dependence

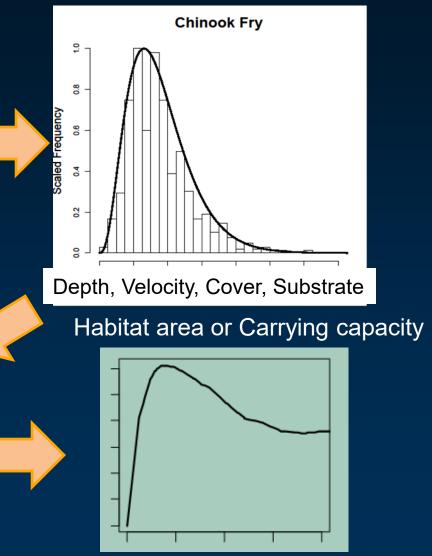

Juvenile outmigrants (millions)

Snake R. Fall Chinook Salmon at Lower Granite Dam



Linking Habitat, Capacity, and Density Dependence

Typical Habitat Modeling Workflow


2D Hydraulic Models

Summarize over Spatial Units

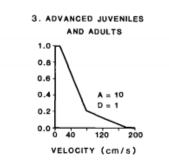
Habitat Models

River discharge

Habitat Methods Review

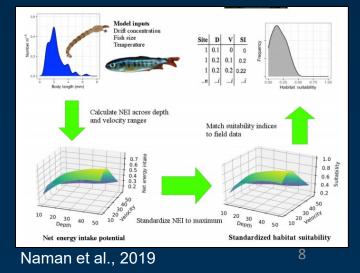
Habitat Suitability Indices

Resource Selection Functions

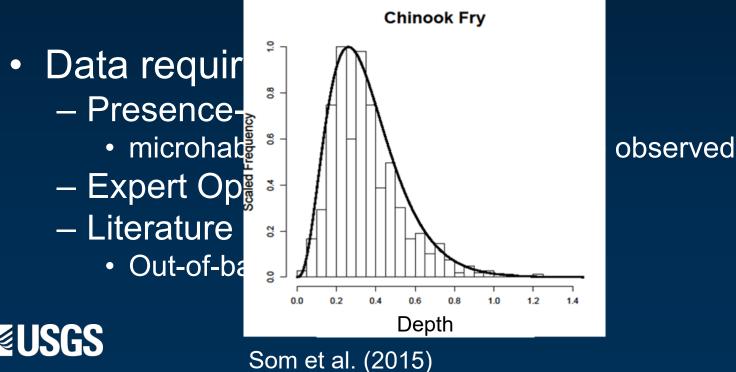

Occupancy Models

Abundance Models

Data Bioenergetic Approaches


Data

SUITABILIT


FIGURE 1.—Suitability index curves for water velocity (cm/s) for paddlefish spawning and egg incubation (1), advanced larvae and early juveniles (2), and advanced juveniles and adults (3); A is the number of panelists who agreed on the curve; D is the number who disagreed.

Crance, 1987

Habitat Suitability Indices

- Habitat function
 - Univariate habitat suitability index (HSI)
 - (0, 1) scale
 - Function for combining univariate HSI
 - Variables weighted equally

Resource Selection Functions

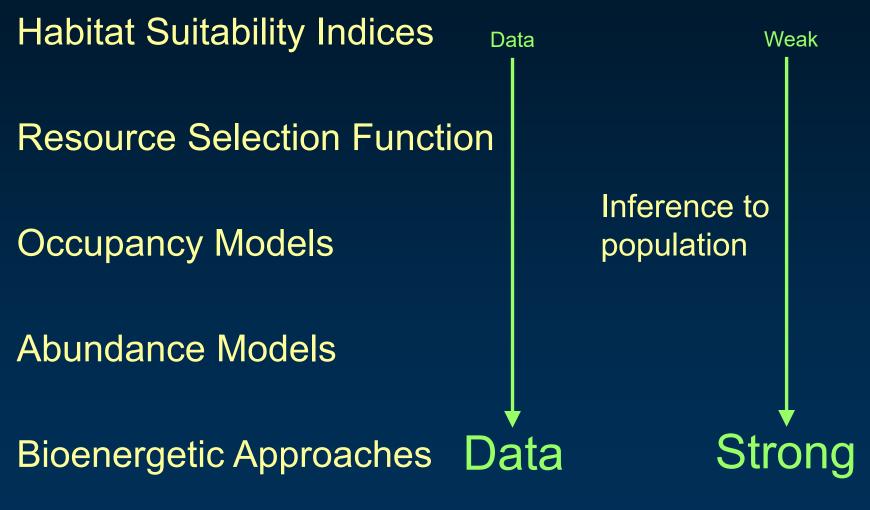
Habitat function

- Probability of observing fish versus not observed
- Logistic regression techniques
 - Variable weights determined by model fit to data
 - Can evaluate interactions among variables
 - Model selection to determine best model structure
- Data requirements
 - Presence and non-presence data
 - Microhabitat variables where fish are observed and not observed

Occupancy Modeling

Habitat function

- Probability of true presence and absence
- Accounts for false absences
 - Not observed but present
- Logistic regression techniques
- Can assess factors affecting detection
- Data requirements
 - Presence and non-presence data
 - Repeated samples
 - To estimate detection probability



Bioenergetic Approaches

- Food acquisition is a dimension of habitat
- Habitat function
 - Net rate of energy intake (NREI)
 - Energetic costs versus benefits
 - Integrates both biotic and abiotic factors
- Data requirements

 Drift concentration
 Fish size
 Water temperature

Increasing Strength of Inference

Importance of Within-Basin Models

Millidine et al. (2016):

avoid transferring models between locations

especially in the absence of model validation;

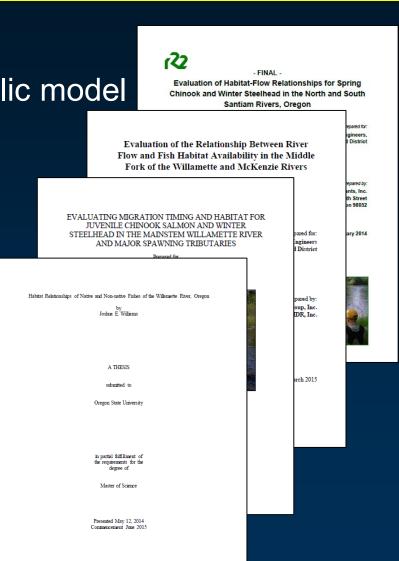
Beecher et al. (2010):

when the models have not been validated by empirical data, irretrievable commitments of natural resources (e.g., issuance of perpetual water rights) should be avoided.

Shirvell (1989):

The 'best' prediction resulted from using

river-specific habitat suitability criteria



Habitat timeseries with 2D hydraulic model

Emphasis on:

- R2 (2005, 2009, 2014)
- RDG (2015)
- Bond et al. (2017)
- Whitman (2017)
- Williams (2014)
- Stayton Hydro (2010)
- SLICES
- Willamette Fish Database

Can existing data inform habitat modeling?

- Valuable data, but of limited utility
- Many used PHABSIM (HSI-based)
 - Course measurement of existing physical habitat
 - Rely on out-of-basin habitat suitability indices
- Incompatible spatial scales

 Fish data collected at meso-habitat level
 - Habitats not sampled representatively
- Studies were designed for different purposes
 Not to inform 2D hydraulic habitat models

Critical Data Gaps

- Lack of Willamette-specific habitat use data
 At a scale required to inform 2D habitat modeling
- Needed to support and validate existing modeling – SWIFT
- Pilot Field Study in 2020

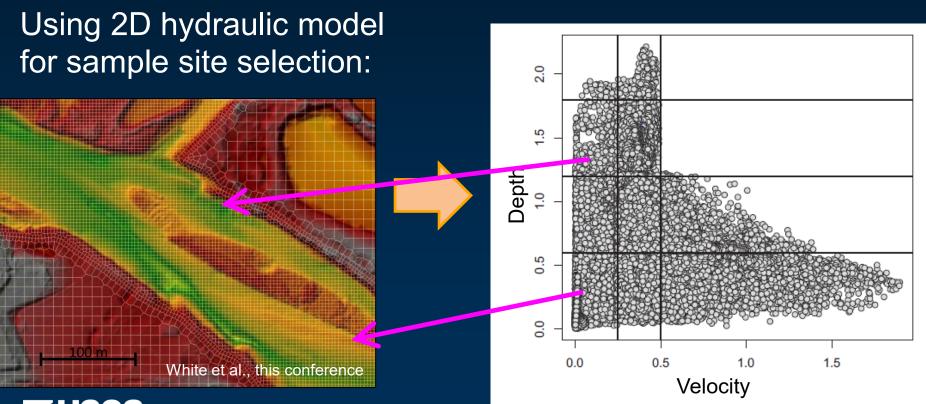
USGS Pilot Study in 2020

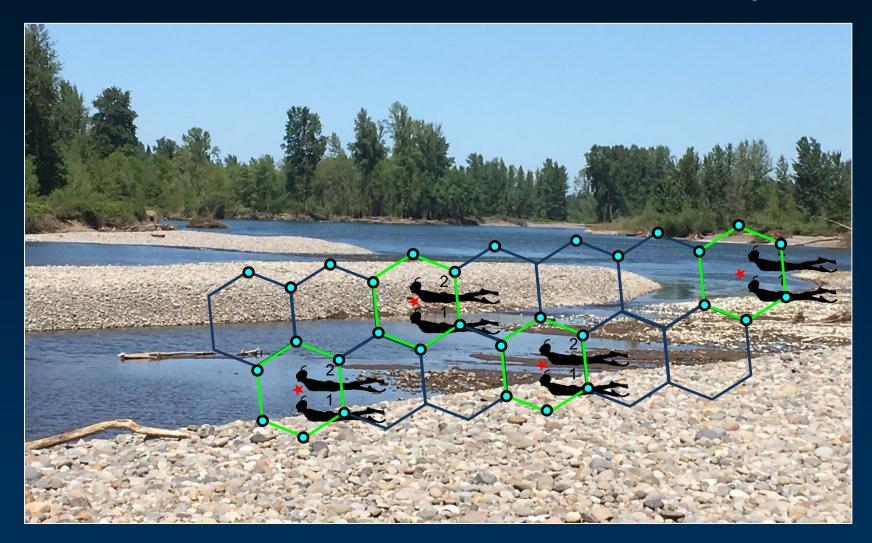
Habitat Suitability Indices

Resource Selection Function

Accounts for imperfect detection

Abundance Models


Bioenergetic Approaches



N-mix for fish: estimating riverine salmonid habitat selection via N-mixture models

Nicholas A. Som, Russell W. Perry, Edward C. Jones, Kyle De Juilio, Paul Petros, William D. Pinnix, and Derek L. Rupert

Double Observer Snorkel Survey

Summary

- Many improved methods of habitat modeling
- Most require data collection and analysis

 Strengthens inference to population of interest
- Lack of Willamette-specific data

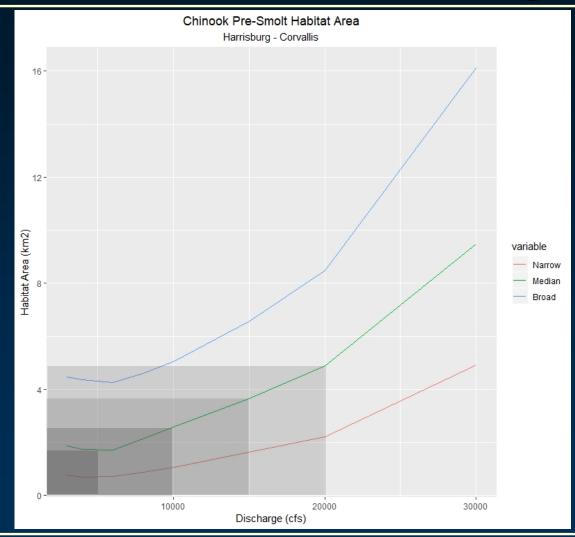
 To inform 2D habitat modeling
- 2020 Pilot Study

 Fish data to validate existing habitat models

Questions?

Habitat definitions

Defining Habitat


Species	Size Class	Criteria	Narrow	Median	Broad
	Pre-smolt (>60mm)	Depth (ft)	0.15-2.25	0.15-3.5	0.15-Inf
Chinook salmon		Velocity (ft/s)	0-1.25	0-1.63	0-3
Junion		Bed Slope	<0.4	<0.55	Any
	Fry (<60mm)	Depth (ft)	0.15-2.0	0.15-3.5	0.15-5
Chinook salmon		Velocity (ft/s)	0-0.5	0-1.25	0-1.5
		Bed Slope	<0.4	<0.55	Any
	Pre-smolt (>60mm)	Depth (ft)	0.15-1	0.15-1	0.15-Inf
Steelhead		Velocity (ft/s)	0-1.75	0-3.25	0-3.5
		Bed Slope	NA	NA	NA
	Fry (<60mm)	Depth (ft)	0.25-1.25	0.25-2	0.25-5
Steelhead		Velocity (ft/s)	0-0.5	0-1.25	0-2
		Bed Slope	NA	NA	NA

Values from literature review by Jim, Tyrell, and Jessica, reviewed by SWIFT members

Habitat area versus discharge

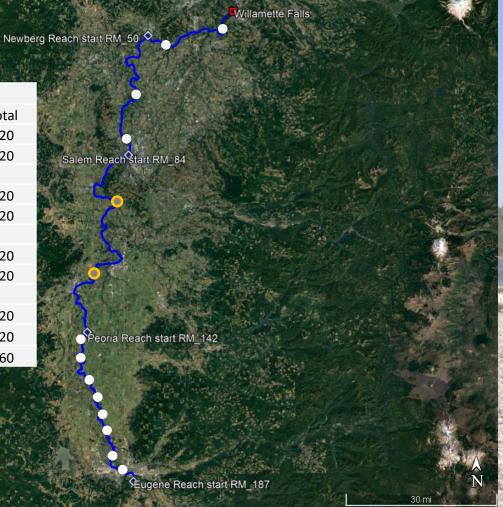
Validation objectives

Model validation

Determine how model predicts conditions relative to discharge and temperature regime in 2020 Base sampling periods relative to juvenile life history and range of model behavior Assess model performance across different hydrogeomorphic reaches

Habitat validation

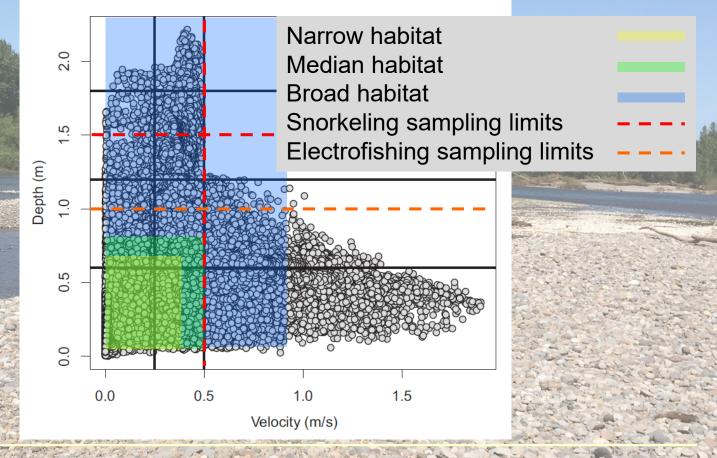
Obtain fish abundance estimates relative to modeled habitat cells to verify or refine habitat definitions


Drift sample collection

Utilize presence of field staff to collect aquatic invertebrate drift samples for future analysis regarding NREI and carrying capacity

Mainstem reaches; segment; cells

		Eugene	Peoria	Salem	Newberg	Night	
	Period 1						Total
	Habitat_1	120					120
	Habitat_0	120					120
1	Period 1b						
	Habitat_1		30	30	30	30	120
	Habitat_0		30	30	30	30	120
	Period 2						
	Habitat_1	120					120
	Habitat_0	120					120
	Period 3						
	Habitat_1	120					120
	Habitat_0	120					120
	Total	720	60	60	60	60	960
					Contraction of the second	AND DESCRIPTION OF	



Google Earth ata SIO, NOAA, U.S. Navy, NGA, GEBCO

Sampling strategy example

Fig. 1. Bivariate plot of spatially indexed depth and velocity values predicted by a two-dimensional hydrodynamics model at one site and discharge. Vertical and horizontal lines form bins from which spatially stratified individual sample locations were selected.

Plot example from Som et al 2017; N-mix for fish: estimating riverine salmonid habitat selection via N-mixture models; CJFAS

Proposed model validation ...

Validate Mainstem Willamette models of ORWSC

Spatially balanced random sample of locations Stratified by rkm, habitat area uniformity, and reach (Headwaters, Peoria, Salem, Newberg) Designated as habitat and non-habitat by model prediction using SWIFT habitat criteria Flow variation Relevant to hydraulic variation (<5, 5-10, 10-15, 15-20 kcfs) **Temperature** variation Relevant to seasonal variation (5-10, 10-15, 15-20 °C) Life stage utilizing mainstem habitat Fry and juvenile rearing Two size classes (<60 mm fry; >60 mm juvenile (presmolt)) Seasonality Three sampling periods: mid April to late September

Proposed model validation ...

Diel variation Day/night (±1 hr after and before civil twilight)

Physical parameters

Depth, temperature, velocity, sampled area, lateral temperature assessment, dominate substrate classification (D40 gravelometer), vegetation type classification

Fish assessment

Salmonid presence/absence, enumeration Other species encountered Multiple observer

Analysis estimates

Detection probability, probability of presence, occupancy, relative abundance

"This is how we do it ..."

At each site (day 1):

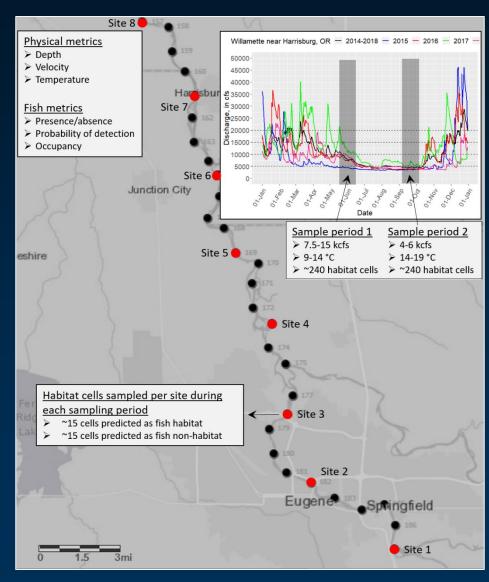
Deploy temperature lateral cross-section array (~24 hrs)

Drift samples (taken prior to upstream disturbance)

For each cell (day 1):

Deploy cell boundary polygon, record centroid GPS location, depth, velocity, and temperature

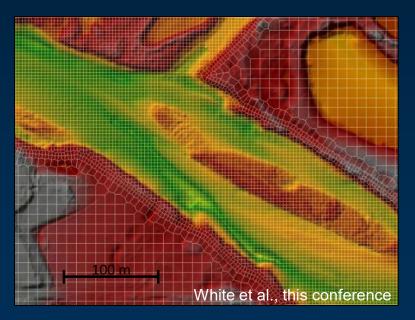
For each cell (day 2):

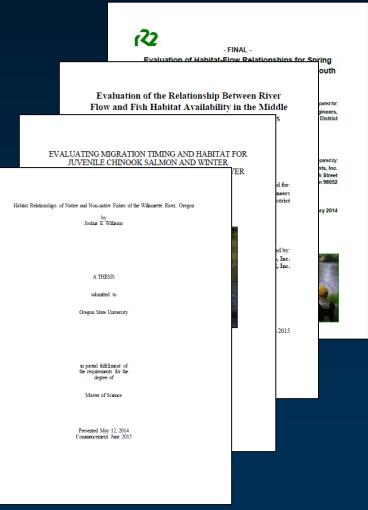

Snorkel survey each cell

At each site (day 2):

Retrieve temperature lateral cross-section array

Field Data t





Existing Studies

- Numerous studies available

- 1934-2017
- Spatial limitations
- Primarily PHABSIM
- Solid foundation
- Emerging methods promising

SWIFT Approach

Defining Habitat

Species	Size Class	Criteria	Narrow	Median	Broad
	Pre-smolt (>60mm)	Depth (ft)	0.15-2.25	0.15-3.5	0.15-Inf
Chinook salmon		Velocity (ft/s)	0-1.25	0-1.63	0-3
Junion		Bed Slope	<0.4	<0.55	Any
	Fry (<60mm)	Depth (ft)	0.15-2.0	0.15-3.5	0.15-5
Chinook salmon		Velocity (ft/s)	0-0.5	0-1.25	0-1.5
		Bed Slope	<0.4	<0.55	Any
	Pre-smolt (>60mm)	Depth (ft)	0.15-1	0.15-1	0.15-Inf
Steelhead		Velocity (ft/s)	0-1.75	0-3.25	0-3.5
		Bed Slope	NA	NA	NA
	Fry (<60mm)	Depth (ft)	0.25-1.25	0.25-2	0.25-5
Steelhead		Velocity (ft/s)	0-0.5	0-1.25	0-2
		Bed Slope	NA	NA	NA

Values from literature review by Jim, Tyrell, and Jessica, reviewed by SWIFT members

